Brain development in mice lacking L1–L1 homophilic adhesion

نویسندگان

  • Kyoko Itoh
  • Ling Cheng
  • Yoshimasa Kamei
  • Shinji Fushiki
  • Hiroyuki Kamiguchi
  • Paul Gutwein
  • Alexander Stoeck
  • Bernd Arnold
  • Peter Altevogt
  • Vance Lemmon
چکیده

A new mouse line has been produced in which the sixth Ig domain of the L1 cell adhesion molecule has been deleted. Despite the rather large deletion, L1 expression is preserved at normal levels. In vitro experiments showed that L1-L1 homophilic binding was lost, along with L1-alpha5beta1 integrin binding. However, L1-neurocan and L1-neuropilin binding were preserved and sema3a responses were intact. Surprisingly, many of the axon guidance defects present in the L1 knockout mice, such as abnormal corticospinal tract and corpus callosum, were not observed. Nonetheless, when backcrossed on the C57BL/6 strain, a severe hydrocephalus was observed and after several generations, became an embryonic lethal. These results imply that L1 binding to L1, TAG-1, or F3, and L1-alpha5beta1 integrin binding are not essential for normal development of a variety of axon pathways, and suggest that L1-L1 homophilic binding is important in the production of X-linked hydrocephalus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Errors in corticospinal axon guidance in mice lacking the neural cell adhesion molecule L1

BACKGROUND Neural cell adhesion molecules of the immunoglobulin superfamily (IgCAMs) have been implicated in both the fasciculation and guidance of axons, but direct genetic evidence of a role for neural IgCAMs in axon guidance in vertebrates is lacking. The L1 subfamily of vertebrate neural IgCAMs function as both homophilic and heterophilic receptors for a variety of cell-surface and extracel...

متن کامل

Cryo-electron tomography of homophilic adhesion mediated by the neural cell adhesion molecule L1.

The neural cell adhesion molecule L1 participates in homophilic interactions important for axon guidance and neuronal development. The structural details of homophilic adhesion mediated by L1 and other immunoglobulin superfamily members containing an N-terminal horseshoe arrangement of four immunoglobulin-like domains are unknown. Here we used cryo-electron tomography to study liposomes to whic...

متن کامل

Pathological missense mutations of neural cell adhesion molecule L1 affect homophilic and heterophilic binding activities.

Mutations in the gene for neural cell adhesion molecule L1 (L1CAM) result in a debilitating X-linked congenital disorder of brain development. At the neuronal cell surface L1 may interact with a variety of different molecules including itself and two other CAMs of the immunoglobulin superfamily, axonin-1 and F11. However, whether all of these interactions are relevant to normal or abnormal deve...

متن کامل

L1 mediated homophilic binding and neurite outgrowth are modulated by alternative splicing of exon 2.

The neural cell adhesion molecule (CAM) L1 is a member of the immunoglobulin superfamily that has been implicated in neuronal adhesion, neurite outgrowth, and axon guidance. The clinical importance of L1 is illustrated by pathological mutations that lead to hydrocephalus, mental retardation, motor defects, and early mortality. The L1 gene is composed of 28 exons, including exons 2 and 27 that a...

متن کامل

L1 Makes Immunological Progress by Expanding Its Relations

The cell-adhesion molecule L1 was originally described in the nervous system. It has recently been detected in CD4+ T lymphocytes, peripheral B lymphocytes, and granulocytes in the human immune system and in similar leucocyte types in the murine immune system. L1 mediates neural recognition by Ca+2, Mg+2-independent homophilic binding. In the human and murine immune systems, L1 binds to the "cl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 165  شماره 

صفحات  -

تاریخ انتشار 2004